### organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

### Hydrogen-bonding patterns in 2-amino-4,6-dimethoxypyrimidine-phthalic acid (1/1)

#### Kaliyaperumal Thanigaimani,<sup>a</sup> Packianathan Thomas Muthiah<sup>a</sup>\* and Daniel E. Lynch<sup>b</sup>

<sup>a</sup>School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India, and <sup>b</sup>Faculty of Health and Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, England

Correspondence e-mail: tommtrichy@yahoo.co.in

Received 22 September 2007; accepted 26 September 2007

Key indicators: single-crystal X-ray study; T = 120 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.041; wR factor = 0.114; data-to-parameter ratio = 15.8.

In the title cocrystal,  $C_6H_9N_3O_2 \cdot C_8H_6O_4$ , both carboxylic acid groups of phthalic acid form an  $R_2^2(8)$  ring motif (through N-H···O and O-H···N hydrogen bonds) on either side of the 2-amino-4,6-dimethoxypyrimidine molecule, generating a helical chain along the *b* axis. This chain is interpenetrated by a centrosymmetrically related chain to which it is linked by  $\pi$ - $\pi$  stacking [perpendicular separation 3.332 Å, centroidcentroid distance 3.6424 (7) Å].

#### **Related literature**

For related literature, see: Baker & Santi (1965); Bernstein *et al.* (1995); Chinnakali *et al.* (1999); Etter (1990); Hunt *et al.* (1980); Hunter (1994); Low *et al.* (2002); Lynch & Jones (2004); Muthiah *et al.* (2006); Schwalbe & Williams (1982); Thanigaimani *et al.* (2006); Van Schalkwyk (1954).



#### Crystal data

C<sub>6</sub>H<sub>9</sub>N<sub>3</sub>O<sub>2</sub>·C<sub>8</sub>H<sub>6</sub>O<sub>4</sub>  $M_r = 321.29$ Monoclinic,  $P2_1/c$  a = 11.2175 (3) Å b = 7.3323 (2) Å c = 17.7651 (4) Å  $\beta = 90.776$  (2)°



Bruker–Nonius KappaCCD area-detector diffractometer Absorption correction: none 17905 measured reflections

V = 1461.05 (6) Å<sup>3</sup>

Mo  $K\alpha$  radiation

 $0.50 \times 0.40 \times 0.25~\text{mm}$ 

 $\mu = 0.12 \text{ mm}^{-1}$ 

T = 120 K

Z = 4

3328 independent reflections 2748 reflections with  $I > 2\sigma(I)$ 

Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.041$ | 211 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.114$               | H-atom parameters constrained                              |
| S = 1.08                        | $\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 3328 reflections                | $\Delta \rho_{\rm min} = -0.30 \ {\rm e} \ {\rm \AA}^{-3}$ |

 $R_{\rm int} = 0.029$ 

## Table 1Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$ | $D-\mathrm{H}$ | $H \cdot \cdot \cdot A$              | $D{\cdots}A$               | D-H                 | $\cdot \cdot A$ |
|-----------------------------|----------------|--------------------------------------|----------------------------|---------------------|-----------------|
| $N2-H2A\cdots O5^{i}$       | 0.86           | 2.06                                 | 2.8704 (15)                | 156                 |                 |
| $N2 - H2B \cdots O4$        | 0.86           | 2.01                                 | 2.8609 (15)                | 173                 |                 |
| O3−H3· · ·N1                | 0.82           | 1.87                                 | 2.6881 (14)                | 171                 |                 |
| O6−H6···N3 <sup>ii</sup>    | 0.82           | 1.86                                 | 2.6738 (14)                | 172                 |                 |
| $C8 - H8B \cdots O5^{iii}$  | 0.96           | 2.56                                 | 3.2199 (17)                | 126                 |                 |
| Symmetry codes:             | (i) $-x + 2$ , | $y + \frac{1}{2}, -z + \frac{1}{2};$ | (ii) $-x+2, y-\frac{1}{2}$ | $-z + \frac{1}{2};$ | (iii)           |
| -x + 2, -y, -z.             |                |                                      |                            |                     |                 |

Data collection: *DENZO* (Otwinowski & Minor, 1997) and *COLLECT* (Hooft, 1998); cell refinement: *DENZO* and *COLLECT*; data reduction: *DENZO* and *COLLECT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *PLATON*.

KT thanks UGC (New Delhi) for the UGC-Rajiv Gandhi Junior Research Fellowship [grant No. F.16–12/2000 (SA-II)]. DL thanks the EPSRC National Crystallography Service (Southampton, England) for X-ray data collection. KT and PTM thank Dr J. N. Low for pointing out the helical motif present in this structure.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LW2035).

#### References

- Baker, B. R. & Santi, D. V. (1965). J. Pharm. Sci. 54, 1252-1257.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Chinnakali, K., Fun, H.-K., Goswami, S., Mahapatra, A. K. & Nigam, G. D. (1999). Acta Cryst. C55, 399–401.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Hunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). J. Biochem. 187, 533–536.
- Hunter, C. A. (1994). Chem. Soc. Rev. 23, 101-109.
- Low, J. N., Quesada, A., Marchal, A., Melguizo, M., Nogueras, M. & Glidewell, C. (2002). Acta Cryst. C58, o289–o294.
- Lynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748-754.
- Muthiah, P. T., Francis, S., Rychlewska, U. & Warzajtis, B. (2006). *Beilstein J. Org. Chem.* **2**, article No. 8.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Schalkwyk, T. G. D. van (1954). Acta Cryst. 7, 775.
- Schwalbe, C. H. & Williams, G. J. B. (1982). Acta Cryst. B38, 1840-1843.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2006). Acta Cryst. E62, 02976–02978.

#### Acta Cryst. (2007). E63, o4212 [doi:10.1107/S1600536807047447]

#### Hydrogen-bonding patterns in 2-amino-4,6-dimethoxypyrimidine-phthalic acid (1/1)

#### K. Thanigaimani, P. T. Muthiah and D. E. Lynch

#### Comment

Aminopyrimidine-carboxylate interactions are of fundamental important since they are involved in protein-nucleic acids recognition and protein-drug binding (Hunt *et al.*, 1980; Baker & Santi, 1965). The adducts of carboxylic acid with 2-amino heterocylic ring system have a graph-set motif  $[R_2^2(8)]$  (Lynch & Jones, 2004). This motif is very robust in aminopyrimidine-carboxylic acid/ carboxylate systems. The crystal structures of aminopyrimidine derivatives (Schwalbe & Williams, 1982), aminopyrimidine carboxylates (Muthiah *et al.*, 2006) and cocrystals (Chinnakali *et al.*, 1999) have been reported. The crystal structure of 2-amino-4,6-dimethoxy pyrimidine (Low *et al.*, 2002) and 2-amino-4,6-dimethoxypyrimidine-4-aminobenzoic acid (1/1) (Thanigaimani *et al.*, 2006) have also been reported. The crystal structure of phthalic acid (Van Schalkwyk, 1954) is known. The present study investigates the hydrogen bonding patterns in 2-amino-4,6-dimethoxy pyrimidine: phthalic acid (1/1) cocrystal(I).

The asymmetric unit (Fig 1) contains one 2-amino-4,6-dimethoxypyrimidine molecule and one phthalic acid molecule, which are linked by N—H···O and O—H···N intermolecular hydrogen bonds involving the nitrogen (N1) atom and 2-amino (NH<sub>2</sub>) group of the pyrimidine ring and carboxyl oxygen atoms (O3 and O4) to form a eight membered ring motif of graph-set notation of  $[R_2^2(8)]$  (Etter, 1990; Bernstein *et al.*, 1995). The another nitrogen atom (N3) and 2-amino (NH<sub>2</sub>) group of the pyrimidine ring also interact with carboxyl oxygen atoms (O5 and O6) to form a similar eight membered ring motif, generating a helical chain (made up of alternating pyrimidine and phthalic acid molecules) along the *b* axis (Fig 2). This chain is interpenetrated by a centrosymmetrically related chain (Fig 3) to which it is linked by  $\pi$ - $\pi$  stacking of pyrimidines with a perpendicular separation of 3.332 Å, a centroid-centroid distance of 3.6424 (7) Å, ring offset of 1.471Å and a slip angle (the angle between the centroid vector and the normal to the plane) of 23.81° These are typical aromatic stacking values (Hunter, 1994).

#### Experimental

A hot methanolic solution (20 ml) of 2-amino-4,6-dimethoxy pyrimidine (38 mg, Aldrich) and phthalic acid (41 mg, Loba chemie) was warmed for half an hour over a water bath. The mixture was cooled slowly and kept at room temperature. After a few days colourless plate-like crystals were obtained.

#### Refinement

All H atoms were positioned geometrically and were refined using a riding model. The C—H, O—H and N—H bond lengths are 0.93–0.96, 0.82 and 0.86 Å, respectively [ $U_{iso}$  (H)=1.2  $U_{eq}$ (parent atom)].

Figures



Fig. 1. An *ORTEP* view of the asymmetric unit of (I) showing 50% probability displacement ellipsoids.

Fig. 2. Helical chain containing alternative pyrimidine and phthalic acid molecules (I) [symmetry code: (i) -x + 2, y + 1/2, -z + 1/2 (ii) -x + 2, y - 1/2, -z + 1/2.

Fig. 3. Two interpenetrated centrosymmetrically related helical chain along the b axis (I).

#### 2-amino-4,6-dimethoxypyrimidine-phthalic acid (1/1)

Crystal data  $F_{000} = 672$ C<sub>6</sub>H<sub>9</sub>N<sub>3</sub>O<sub>2</sub>·C<sub>8</sub>H<sub>6</sub>O<sub>4</sub>  $M_r = 321.29$  $D_{\rm x} = 1.461 {\rm Mg m}^{-3}$ Mo Kα radiation Monoclinic,  $P2_1/c$  $\lambda = 0.71073 \text{ Å}$ Hall symbol: -P 2ybc Cell parameters from 25 reflections a = 11.2175 (3) Å  $\theta = 2.9 - 27.5^{\circ}$ *b* = 7.3323 (2) Å  $\mu = 0.12 \text{ mm}^{-1}$ c = 17.7651 (4) Å T = 120 K $\beta = 90.776 \ (2)^{\circ}$ Plate, colourless V = 1461.05 (6) Å<sup>3</sup>  $0.50\times0.40\times0.25~mm$ Z = 4

#### Data collection

| Bruker–Nonius KappaCCD area-detector diffractometer       | 2748 reflections with $I > 2\sigma(I)$ |
|-----------------------------------------------------------|----------------------------------------|
| Radiation source: Bruker-Nonius FR591 rotating an-<br>ode | $R_{\rm int} = 0.029$                  |
| Monochromator: graphite                                   | $\theta_{\text{max}} = 27.5^{\circ}$   |
| T = 120  K                                                | $\theta_{\min} = 3.5^{\circ}$          |

| $\phi$ and $\omega$ scans    | $h = -14 \rightarrow 14$ |
|------------------------------|--------------------------|
| Absorption correction: none  | $k = -9 \rightarrow 9$   |
| 17905 measured reflections   | $l = -23 \rightarrow 23$ |
| 3328 independent reflections |                          |

#### Refinement

| Refinement on $F^2$                                    | Hydrogen site location: inferred from neighbouring sites                                                                                          |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Least-squares matrix: full                             | H-atom parameters constrained                                                                                                                     |
| $R[F^2 > 2\sigma(F^2)] = 0.041$                        | $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.062P)^{2} + 0.4007P]$<br>where $P = (F_{o}^{2} + 2F_{c}^{2})/3$                                                |
| $wR(F^2) = 0.114$                                      | $(\Delta/\sigma)_{max} < 0.001$                                                                                                                   |
| <i>S</i> = 1.08                                        | $\Delta \rho_{max} = 0.33 \text{ e} \text{ Å}^{-3}$                                                                                               |
| 3328 reflections                                       | $\Delta \rho_{min} = -0.30 \text{ e } \text{\AA}^{-3}$                                                                                            |
| 211 parameters                                         | Extinction correction: SHELXL97 (Sheldrick, 1997),<br>FC <sup>*</sup> =KFC[1+0.001XFC <sup>2</sup> $\Lambda^3$ /SIN(2 $\Theta$ )] <sup>-1/4</sup> |
| Primary atom site location: structure-invariant direct |                                                                                                                                                   |

Primary atom site location: structure-invariant direct Extinction coefficient: 0.034 (4)

Secondary atom site location: difference Fourier map

#### Special details

**Geometry**. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

**Refinement**. Refinement on  $F^2$  for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The observed criterion of  $F^2 > 2$ sigma( $F^2$ ) is used only for calculating -R-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|    | x            | у            | Z            | $U_{\rm iso}*/U_{\rm eq}$ |
|----|--------------|--------------|--------------|---------------------------|
| O1 | 1.33166 (8)  | 0.41207 (13) | -0.01434 (5) | 0.0234 (3)                |
| O2 | 0.94377 (8)  | 0.19097 (15) | -0.08929 (5) | 0.0270 (3)                |
| N1 | 0.99024 (9)  | 0.26729 (16) | 0.02820 (6)  | 0.0207 (3)                |
| N2 | 1.03481 (10) | 0.33885 (18) | 0.15133 (6)  | 0.0275 (4)                |
| N3 | 1.18347 (9)  | 0.37441 (15) | 0.06527 (6)  | 0.0206 (3)                |
| C2 | 1.07043 (11) | 0.32599 (18) | 0.08002 (7)  | 0.0202 (4)                |
| C4 | 1.21785 (11) | 0.35975 (17) | -0.00621 (7) | 0.0190 (3)                |
| C5 | 1.14427 (11) | 0.29757 (18) | -0.06394 (7) | 0.0205 (3)                |
| C6 | 1.02900 (11) | 0.25317 (18) | -0.04249 (7) | 0.0203 (4)                |
| C7 | 1.38345 (12) | 0.39831 (19) | -0.08761 (7) | 0.0248 (4)                |
| C8 | 0.97333 (13) | 0.1688 (2)   | -0.16733 (7) | 0.0313 (5)                |
| O3 | 0.76763 (8)  | 0.15122 (14) | 0.05538 (5)  | 0.0255 (3)                |
|    |              |              |              |                           |

| O4  | 0.79349 (9)  | 0.23059 (17)  | 0.17615 (5) | 0.0361 (4) |
|-----|--------------|---------------|-------------|------------|
| 05  | 0.76904 (9)  | -0.13437 (16) | 0.24381 (5) | 0.0335 (3) |
| O6  | 0.65842 (8)  | -0.00257 (14) | 0.33283 (5) | 0.0266 (3) |
| C9  | 0.61256 (11) | 0.08770 (17)  | 0.13920 (7) | 0.0189 (3) |
| C10 | 0.58606 (11) | 0.00391 (17)  | 0.20794 (7) | 0.0191 (3) |
| C11 | 0.47029 (11) | -0.05260 (19) | 0.22163 (8) | 0.0246 (4) |
| C12 | 0.38160 (12) | -0.0300 (2)   | 0.16694 (9) | 0.0293 (4) |
| C13 | 0.40797 (12) | 0.0508 (2)    | 0.09912 (8) | 0.0283 (4) |
| C14 | 0.52267 (11) | 0.11137 (19)  | 0.08528 (7) | 0.0230 (4) |
| C15 | 0.73442 (11) | 0.16274 (18)  | 0.12583 (7) | 0.0202 (4) |
| C16 | 0.68190 (11) | -0.04810 (18) | 0.26337 (7) | 0.0206 (4) |
| H2A | 1.08350      | 0.37690       | 0.18570     | 0.0330*    |
| H2B | 0.96320      | 0.30910       | 0.16290     | 0.0330*    |
| Н5  | 1.16990      | 0.28630       | -0.11330    | 0.0250*    |
| H7A | 1.46440      | 0.44060       | -0.08530    | 0.0370*    |
| H7B | 1.33860      | 0.47170       | -0.12260    | 0.0370*    |
| H7C | 1.38200      | 0.27340       | -0.10380    | 0.0370*    |
| H8A | 0.90510      | 0.12350       | -0.19460    | 0.0470*    |
| H8B | 1.03790      | 0.08370       | -0.17160    | 0.0470*    |
| H8C | 0.99670      | 0.28430       | -0.18780    | 0.0470*    |
| H3  | 0.83520      | 0.19250       | 0.05140     | 0.0380*    |
| Н6  | 0.71170      | -0.04000      | 0.36090     | 0.0400*    |
| H11 | 0.45190      | -0.10580      | 0.26760     | 0.0300*    |
| H12 | 0.30440      | -0.06950      | 0.17610     | 0.0350*    |
| H13 | 0.34860      | 0.06480       | 0.06250     | 0.0340*    |
| H14 | 0.53960      | 0.16800       | 0.03980     | 0.0280*    |

### Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$   | $U^{22}$    | $U^{33}$   | $U^{12}$    | $U^{13}$   | $U^{23}$    |
|-----|------------|-------------|------------|-------------|------------|-------------|
| 01  | 0.0198 (4) | 0.0317 (5)  | 0.0188 (4) | -0.0030 (4) | 0.0051 (3) | -0.0006 (4) |
| O2  | 0.0199 (5) | 0.0452 (6)  | 0.0160 (4) | -0.0030 (4) | 0.0022 (3) | -0.0057 (4) |
| N1  | 0.0188 (5) | 0.0277 (6)  | 0.0156 (5) | -0.0002 (4) | 0.0027 (4) | 0.0000 (4)  |
| N2  | 0.0186 (5) | 0.0486 (8)  | 0.0155 (5) | -0.0066 (5) | 0.0037 (4) | -0.0022 (5) |
| N3  | 0.0189 (5) | 0.0263 (6)  | 0.0165 (5) | -0.0003 (4) | 0.0022 (4) | 0.0002 (4)  |
| C2  | 0.0193 (6) | 0.0232 (7)  | 0.0181 (6) | 0.0013 (5)  | 0.0015 (5) | 0.0014 (5)  |
| C4  | 0.0187 (6) | 0.0196 (6)  | 0.0188 (6) | 0.0025 (5)  | 0.0035 (5) | 0.0022 (5)  |
| C5  | 0.0224 (6) | 0.0247 (7)  | 0.0145 (5) | 0.0017 (5)  | 0.0037 (5) | 0.0003 (5)  |
| C6  | 0.0209 (6) | 0.0228 (7)  | 0.0173 (6) | 0.0027 (5)  | 0.0007 (5) | 0.0002 (5)  |
| C7  | 0.0242 (7) | 0.0273 (7)  | 0.0231 (6) | -0.0019 (5) | 0.0099 (5) | -0.0009 (6) |
| C8  | 0.0248 (7) | 0.0522 (10) | 0.0170 (6) | -0.0034 (6) | 0.0021 (5) | -0.0083 (6) |
| O3  | 0.0210 (5) | 0.0382 (6)  | 0.0174 (5) | -0.0054 (4) | 0.0041 (4) | -0.0006 (4) |
| O4  | 0.0277 (5) | 0.0595 (8)  | 0.0212 (5) | -0.0182 (5) | 0.0044 (4) | -0.0079 (5) |
| O5  | 0.0236 (5) | 0.0565 (7)  | 0.0204 (5) | 0.0149 (5)  | 0.0017 (4) | -0.0024 (5) |
| O6  | 0.0273 (5) | 0.0363 (6)  | 0.0162 (4) | 0.0104 (4)  | 0.0020 (4) | -0.0001 (4) |
| C9  | 0.0197 (6) | 0.0190 (6)  | 0.0180 (6) | 0.0009 (5)  | 0.0011 (5) | -0.0018 (5) |
| C10 | 0.0192 (6) | 0.0185 (6)  | 0.0198 (6) | 0.0023 (5)  | 0.0030 (5) | -0.0011 (5) |
| C11 | 0.0225 (6) | 0.0233 (7)  | 0.0282 (7) | 0.0008 (5)  | 0.0071 (5) | 0.0016 (6)  |

| C12                   | 0.0164 (6)    | 0.0305 (8)  | 0.0411 (8) | -0.0022(5)         | 0.0036 (6)  | -0.0023 (6)            |
|-----------------------|---------------|-------------|------------|--------------------|-------------|------------------------|
| C13                   | 0.0218 (7)    | 0.0295 (8)  | 0.0334 (8) | 0.0043 (5)         | -0.0062 (5) | -0.0011 (6)            |
| C14                   | 0.0242 (6)    | 0.0225 (7)  | 0.0223 (6) | 0.0021 (5)         | -0.0017 (5) | 0.0008 (5)             |
| C15                   | 0.0208 (6)    | 0.0225 (7)  | 0.0173 (6) | 0.0011 (5)         | 0.0024 (5)  | 0.0028 (5)             |
| C16                   | 0.0201 (6)    | 0.0238 (7)  | 0.0180 (6) | -0.0001 (5)        | 0.0039 (5)  | 0.0016 (5)             |
|                       |               |             |            |                    |             |                        |
| Geometric param       | neters (Å, °) |             |            |                    |             |                        |
| O1—C4                 |               | 1.3427 (15) | С5—Н:      | 5                  | 0.          | 9300                   |
| O1—C7                 |               | 1.4361 (15) | С7—Н′      | 7B                 | 0.          | 9600                   |
| O2—C6                 |               | 1.3386 (16) | С7—Н′      | 7A                 | 0.          | 9600                   |
| O2—C8                 |               | 1.4391 (15) | С7—Н′      | 7C                 | 0.          | 9600                   |
| O3—C15                |               | 1.3134 (15) | C8—H3      | 8C                 | 0.          | 9600                   |
| O4—C15                |               | 1.2123 (16) | C8—H       | 8A                 | 0.          | 9600                   |
| O5—C16                |               | 1.2188 (16) | C8—H       | 8B                 | 0.          | 9600                   |
| 06—C16                |               | 1.3086 (15) | C9—C1      | 10                 | 1.          | 4025 (18)              |
| 03—H3                 |               | 0.8200      | C9_C1      | 15                 | l.<br>1     | 4955 (18)              |
| 00—H0                 |               | 0.8200      | C10 (      | 14                 | l.<br>1     | 3922 (18)<br>4074 (18) |
| N1 - C2               |               | 1.3489 (10) | C10-C      | 711                | 1.          | 3878(18)               |
| N1—C0<br>N2—C2        |               | 1.3368 (16) | C11-0      | -11<br>            | 1.          | 391 (2)                |
| N3—C4                 |               | 1.3364 (16) | C12—C      | 212                | 1.          | 378 (2)                |
| N3—C2                 |               | 1.3460 (16) | C13—C      | 214                | 1.          | 3863 (18)              |
| N2—H2B                |               | 0.8600      | C11—H      | -<br>              | 0.          | 9300                   |
| N2—H2A                |               | 0.8600      | С12—Н      | H12                | 0.          | 9300                   |
| C4—C5                 |               | 1.3849 (18) | C13—H      | H13                | 0.          | 9300                   |
| C5—C6                 |               | 1.3916 (18) | C14—H      | 114                | 0.          | 9300                   |
| O3…N1                 |               | 2.6881 (14) | С13…Н      | [14 <sup>v</sup>   | 3.          | 0100                   |
| O4…C16                |               | 2.8629 (17) | С14…Н      | 14 <sup>v</sup>    | 3.          | 1000                   |
| O4…N2                 |               | 2.8609 (15) | С14…Н      | 7C <sup>ii</sup>   | 3.          | 0300                   |
| O4…O5                 |               | 2.9479 (16) | С15…Н      | $7B^{vi}$          | 2.          | 8000                   |
| O5…O4                 |               | 2.9479 (16) | С15…Н      | 2B                 | 2.          | 8500                   |
| $O5 \cdots N2^i$      |               | 2.8704 (15) | С16…Н      | l2A <sup>i</sup>   | 2.          | 8300                   |
| O5…C8 <sup>ii</sup>   |               | 3.2199 (17) | H2A…0      | C16 <sup>iii</sup> | 2.          | 8300                   |
| O5…C15                |               | 3.0443 (17) | H2A…(      | 05 <sup>iii</sup>  | 2.          | 0600                   |
| 06…N3 <sup>i</sup>    |               | 2.6738 (14) | H2A…H      | 16 <sup>iii</sup>  | 2.          | 5300                   |
| O1…H6 <sup>iii</sup>  |               | 2.8000      | H2A…0      | C8 <sup>vii</sup>  | 2.          | 9200                   |
| O1…H13 <sup>iv</sup>  |               | 2.8900      | H2B…C      | )4                 | 2.          | 0100                   |
| O2…H3                 |               | 2.8000      | Н2В…С      | C8 <sup>vii</sup>  | 3.          | 0200                   |
| O3…H14                |               | 2.5700      | H2B…H      | 13                 | 2.          | 5800                   |
| O3…H13 <sup>v</sup>   |               | 2.9200      | H2B…C      | 215                | 2.          | 8500                   |
| O4…H7B <sup>vi</sup>  |               | 2.8000      | H3…C2      |                    | 2.          | 8500                   |
| O4…H2B                |               | 2.0100      | H3…N1      |                    | 1.          | 8700                   |
| O4…H8A <sup>vii</sup> |               | 2.8100      | Н3…О2      | 2                  | 2.          | 8000                   |
| O5···H2A <sup>i</sup> |               | 2.0600      | Н3…С6      | )                  | 2.          | 7900                   |
| O5…H8B <sup>ii</sup>  |               | 2.5600      | H3…H2      | 2B                 | 2.          | 5800                   |
|                       |               |             |            |                    |             |                        |

| O5…H5 <sup>ii</sup>      | 2.6700      | Н5…С7                     | 2.5700 |
|--------------------------|-------------|---------------------------|--------|
| O6…H11                   | 2.6900      | H5····O5 <sup>ii</sup>    | 2.6700 |
| O6…H7A <sup>viii</sup>   | 2.6700      | H5…H8C                    | 2.3400 |
| N1…O3                    | 2.6881 (14) | H5…C8                     | 2.5400 |
| N2…O5 <sup>iii</sup>     | 2.8704 (15) | H5…H7B                    | 2.3400 |
| N2…O4                    | 2.8609 (15) | H5…H7C                    | 2.3800 |
| N2···C8 <sup>vii</sup>   | 3.3041 (17) | H5…H8B                    | 2.3300 |
| N3…O6 <sup>iii</sup>     | 2.6738 (14) | H6…C4 <sup>i</sup>        | 2.7900 |
| N3···C16 <sup>iii</sup>  | 3.4273 (16) | H6…H2A <sup>i</sup>       | 2.5300 |
| N1…H3                    | 1.8700      | H6…C2 <sup>i</sup>        | 2.8200 |
| N2…H8C <sup>vi</sup>     | 2.8600      | H6…N3 <sup>i</sup>        | 1.8600 |
| N3…H6 <sup>iii</sup>     | 1.8600      | H6…O1 <sup>i</sup>        | 2.8000 |
| N3…H13 <sup>iv</sup>     | 2.9300      | H7A…O6 <sup>xii</sup>     | 2.6700 |
| C2···C6 <sup>vi</sup>    | 3.3452 (19) | H7B…C5                    | 2.7400 |
| C6…C2 <sup>vi</sup>      | 3.3452 (19) | H7B···C15 <sup>vi</sup>   | 2.8000 |
| C7···C15 <sup>vi</sup>   | 3.5417 (19) | H7B…H11 <sup>xii</sup>    | 2.5400 |
| C8···O5 <sup>ii</sup>    | 3.2199 (17) | H7B…O4 <sup>vi</sup>      | 2.8000 |
| C8…N2 <sup>ix</sup>      | 3.3041 (17) | H7B…H5                    | 2.3400 |
| C10C11 <sup>x</sup>      | 3.5441 (19) | H7C…H5                    | 2.3800 |
| C11····C10 <sup>xi</sup> | 3.5441 (19) | H7C····C9 <sup>ii</sup>   | 2.7200 |
| C13…C14 <sup>v</sup>     | 3.5805 (19) | H7C…C14 <sup>ii</sup>     | 3.0300 |
| C14···C14 <sup>v</sup>   | 3.4735 (18) | H7C…C10 <sup>ii</sup>     | 2.7800 |
| C14…C13 <sup>v</sup>     | 3.5805 (19) | H7C…C5                    | 2.7700 |
| C15…O5                   | 3.0443 (17) | H8A…H12 <sup>v</sup>      | 2.4100 |
| C15····C7 <sup>vi</sup>  | 3.5417 (19) | H8A…O4 <sup>ix</sup>      | 2.8100 |
| C16…O4                   | 2.8629 (17) | H8B…H5                    | 2.3300 |
| C16…N3 <sup>i</sup>      | 3.4273 (16) | H8B…O5 <sup>ii</sup>      | 2.5600 |
| C2···H6 <sup>iii</sup>   | 2.8200      | H8B…C5                    | 2.7300 |
| С2…Н3                    | 2.8500      | H8C…N2 <sup>vi</sup>      | 2.8600 |
| C4…H6 <sup>iii</sup>     | 2.7900      | H8C····C5                 | 2.7400 |
| C4…H13 <sup>iv</sup>     | 2.8800      | H8C…H5                    | 2.3400 |
| C5…H7C                   | 2.7700      | H11…O6                    | 2.6900 |
| C5…H8B                   | 2.7300      | H11····C9 <sup>xi</sup>   | 2.8900 |
| C5…H8C                   | 2.7400      | H11····C10 <sup>xi</sup>  | 2.9300 |
| С5…Н7В                   | 2.7400      | H11····C7 <sup>viii</sup> | 3.0900 |
| С6…Н3                    | 2.7900      | H11…H7B <sup>viii</sup>   | 2.5400 |
| C7…H11 <sup>xii</sup>    | 3.0900      | H12···H8A <sup>v</sup>    | 2.4100 |
| С7…Н5                    | 2.5700      | H13…O1 <sup>xiii</sup>    | 2.8900 |
| C8···H2B <sup>ix</sup>   | 3.0200      | H13…N3 <sup>xiii</sup>    | 2.9300 |
| C8···H2A <sup>ix</sup>   | 2.9200      | H13····C4 <sup>xiii</sup> | 2.8800 |
| С8…Н5                    | 2.5400      | H13····O3 <sup>v</sup>    | 2.9200 |

| C9····H7C <sup>ii</sup> | 2.7200       | H14…O3               | 2.5700       |
|-------------------------|--------------|----------------------|--------------|
| C9…H11 <sup>x</sup>     | 2.8900       | H14…C13 <sup>v</sup> | 3.0100       |
| C10···H7C <sup>ii</sup> | 2.7800       | H14…C14 <sup>v</sup> | 3.1000       |
| C10…H11 <sup>x</sup>    | 2.9300       |                      |              |
| C4—O1—C7                | 118.31 (10)  | Н8А—С8—Н8С           | 110.00       |
| C6—O2—C8                | 117.70 (10)  | H8B—C8—H8C           | 109.00       |
| С15—О3—Н3               | 109.00       | O2—C8—H8A            | 109.00       |
| С16—О6—Н6               | 109.00       | O2—C8—H8B            | 109.00       |
| C2—N1—C6                | 116.29 (11)  | C10-C9-C14           | 119.58 (11)  |
| C2—N3—C4                | 116.65 (11)  | C14—C9—C15           | 120.00 (11)  |
| C2—N2—H2B               | 120.00       | C10-C9-C15           | 120.29 (11)  |
| H2A—N2—H2B              | 120.00       | C9—C10—C16           | 121.70 (11)  |
| C2—N2—H2A               | 120.00       | C11—C10—C16          | 118.29 (11)  |
| N1—C2—N3                | 124.93 (11)  | C9—C10—C11           | 119.56 (12)  |
| N2—C2—N3                | 117.41 (11)  | C10-C11-C12          | 120.28 (13)  |
| N1—C2—N2                | 117.65 (11)  | C11—C12—C13          | 120.12 (13)  |
| O1—C4—C5                | 124.92 (11)  | C12—C13—C14          | 120.23 (13)  |
| N3—C4—C5                | 123.60 (11)  | C9—C14—C13           | 120.22 (12)  |
| O1—C4—N3                | 111.49 (11)  | O3—C15—C9            | 113.54 (11)  |
| C4—C5—C6                | 114.89 (11)  | O4—C15—C9            | 121.70 (11)  |
| O2—C6—C5                | 124.62 (11)  | O3—C15—O4            | 124.74 (12)  |
| N1—C6—C5                | 123.62 (11)  | O6—C16—C10           | 113.78 (11)  |
| O2—C6—N1                | 111.76 (11)  | O5—C16—O6            | 125.01 (12)  |
| C4—C5—H5                | 123.00       | O5-C16-C10           | 121.07 (11)  |
| С6—С5—Н5                | 123.00       | C10-C11-H11          | 120.00       |
| O1—C7—H7B               | 109.00       | C12—C11—H11          | 120.00       |
| O1—C7—H7C               | 109.00       | C11—C12—H12          | 120.00       |
| H7A—C7—H7C              | 109.00       | С13—С12—Н12          | 120.00       |
| H7B—C7—H7C              | 110.00       | С12—С13—Н13          | 120.00       |
| H7A—C7—H7B              | 110.00       | С14—С13—Н13          | 120.00       |
| O1—C7—H7A               | 109.00       | C9—C14—H14           | 120.00       |
| O2—C8—H8C               | 109.00       | C13—C14—H14          | 120.00       |
| H8A—C8—H8B              | 109.00       |                      |              |
| C7—O1—C4—N3             | 177.86 (11)  | C15—C9—C10—C11       | 175.14 (12)  |
| C7—O1—C4—C5             | -1.95 (18)   | C15—C9—C10—C16       | -12.75 (18)  |
| C8—O2—C6—N1             | -179.91 (11) | C10-C9-C14-C13       | -0.7 (2)     |
| C8—O2—C6—C5             | -0.14 (19)   | C15-C9-C14-C13       | -176.50 (12) |
| C6—N1—C2—N2             | -179.02 (12) | C10-C9-C15-O3        | 147.33 (12)  |
| C6—N1—C2—N3             | 1.7 (2)      | C10-C9-C15-O4        | -34.25 (19)  |
| C2—N1—C6—O2             | 178.89 (11)  | C14—C9—C15—O3        | -36.88 (17)  |
| C2—N1—C6—C5             | -0.89 (19)   | C14—C9—C15—O4        | 141.55 (14)  |
| C4—N3—C2—N1             | -1.06 (19)   | C9—C10—C11—C12       | 1.4 (2)      |
| C4—N3—C2—N2             | 179.63 (12)  | C16-C10-C11-C12      | -170.97 (13) |
| C2—N3—C4—O1             | 179.80 (11)  | C9—C10—C16—O5        | -49.60 (19)  |
| C2—N3—C4—C5             | -0.39 (19)   | C9—C10—C16—O6        | 134.45 (13)  |
| O1—C4—C5—C6             | -179.18 (12) | C11—C10—C16—O5       | 122.61 (15)  |
| N3—C4—C5—C6             | 1.04 (19)    | C11—C10—C16—O6       | -53.35 (16)  |
| C4—C5—C6—O2             | 179.89 (12)  | C10-C11-C12-C13      | -0.8 (2)     |

| C4-C5-C6-N1    | -0.36 (19)  | C11—C12—C13—C14 | -0.6 (2) |
|----------------|-------------|-----------------|----------|
| C14—C9—C10—C11 | -0.67 (19)  | C12—C13—C14—C9  | 1.3 (2)  |
| C14—C9—C10—C16 | 171.44 (12) |                 |          |

Symmetry codes: (i) -*x*+2, *y*-1/2, -*z*+1/2; (ii) -*x*+2, -*y*, -*z*; (iii) -*x*+2, *y*+1/2, -*z*+1/2; (iv) *x*+1, *y*, *z*; (v) -*x*+1, -*y*, -*z*; (vi) -*x*+2, -*y*+1, -*z*; (vii) *x*, -*y*+1/2, *z*+1/2; (viii) *x*-1, -*y*+1/2, *z*+1/2; (ix) *x*, -*y*+1/2, *z*-1/2; (x) -*x*+1, *y*+1/2, -*z*+1/2; (xi) -*x*+1, *y*-1/2, -*z*+1/2; (xii) *x*+1, -*y*+1/2, *z*-1/2; (xiii) *x*-1, *y*, *z*.

*Hydrogen-bond geometry (Å, °)* 

| D—H···A                     | <i>D</i> —Н | $H \cdots A$   | $D \cdots A$ | D—H··· $A$ |
|-----------------------------|-------------|----------------|--------------|------------|
| N2—H2A····O5 <sup>iii</sup> | 0.86        | 2.06           | 2.8704 (15)  | 156        |
| N2—H2B…O4                   | 0.86        | 2.01           | 2.8609 (15)  | 173        |
| O3—H3…N1                    | 0.82        | 1.87           | 2.6881 (14)  | 171        |
| O6—H6···N3 <sup>i</sup>     | 0.82        | 1.86           | 2.6738 (14)  | 172        |
| C8—H8B···O5 <sup>ii</sup>   | 0.96        | 2.56           | 3.2199 (17)  | 126        |
|                             |             | (***) <b>•</b> |              |            |

Symmetry codes: (iii) -x+2, y+1/2, -z+1/2; (i) -x+2, y-1/2, -z+1/2; (ii) -x+2, -y, -z.



Fig. 1





